09. November 2023

Euclid Space Telescope Reveals First Scientific Images Euclid Space Telescope Reveals First Scientific Images

Euclid, the new space telescope launched by the ESA with the involvement of German researchers, has published its first color photographs from outer space. Never before has a telescope been able to produce such sharp astronomical images of such a wide expanse of sky while looking so deep into the distant universe. Researchers from the Argelander Institute for Astronomy at the University of Bonn are participating in the mission. 

Horsehead nebula:
Horsehead nebula: - Euclid shows off a spectacular panoramic and detailed view of the Horsehead nebula (also known as Barnard 33) in the constellation of Orion. Researchers hope to use Euclid’s new observation of this stellar nursery to discover many faint and previously unseen Jupiter-mass planets in the first few years of their lives as well as young brown dwarfs and baby stars. © ESA/Euclid/Euclid Consortium/NASA, image edited by J.-C. Cuillandre and G. Anselmi; CC BY-SA 3.0 IGO
Download all images in original size All rights reserved!

The five images are demonstrative of Euclid’s full potential and proof that the telescope is capable of creating the most comprehensive 3D map of the universe yet in order to reveal some of its dark secrets. The German members of the Euclid Consortium are involved at the forefront of the research being done and are in charge of key technical components and logistics services.

Euclid’s most important job is to undertake the most detailed 3D mapping of the dark universe ever attempted. This highly specialized telescope is helping to find out how dark matter and dark energy make our universe look like it does today. No less than 95 percent of our cosmos appears to be made of these mysterious “dark” ingredients. While dark matter is responsible for the gravitational effect between and within galaxies and caused the expansion of the universe to slow early on, dark energy is the reason why it is growing at a faster rate now. However, researchers still do not know what the two are made of, because their presence only triggers extremely subtle changes in the appearance and motion of objects that we can see.

In order to track down this “dark” influence on the visible universe, Euclid will spend the next six years observing the shapes, distances and movements of billions of galaxies up to 10 billion light years away, armed with its two instruments: the VIS (Visible Instrument) and the NISP (Near Infrared Spectrometer and Photometer). In the process, it will draw the most detailed cosmic 3D map ever created.

As Matthias Kluge, a researcher at the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching and Ludwig-Maximilians-Universität München (LMU), explains: “Euclid’s huge field of view and high sensitivity are enabling the galaxies in the Perseus cluster to be surveyed right into their outermost and faintest regions. Together with the numerous globular clusters that we’re discovering in these razor-sharp images, it’s giving us new insights into the late stages of galaxy evolution, the time when galaxies collide and merge.”

Besides being beautiful to look at, Euclid’s first glimpse of the cosmos is also of great scientific value. For one thing, it shows that the Euclid telescope and its instruments are working extremely well and that the astronomers can use Euclid to study how matter is distributed across the universe and how this is changing at the greatest possible distances. For another, every single image is packed with new information about the local universe. As well as investigating the world of dark matter and dark energy, therefore, these photographs also show how Euclid will unlock a wealth of new insights into the physics of individual stars, the Milky Way and other galaxies.

What makes Euclid’s view of the universe unique is its ability to capture a remarkably sharp visible and infrared image of a broad swath of the sky in a single pass. Combined with image data from ground-based telescopes, this will create the largest and most precise multi-wavelength catalogue in existence in extragalactic astronomy.

“Seeing the first scientific photographs and the exceptional quality of the images and especially of our instrument, the NISP, we’re pleased and proud to have contributed to these amazing results,” says Frank Grupp (MPE, LMU), who led the team at the MPE that developed and built the optics on the NISP. Euclid has been kitted out with the largest optical lenses ever developed for a scientific space mission.

“The exceptional combination of camera size and image definition is enabling an unparalleled study of astronomical objects at all manner of different scales in a single shot,” says Reiko Nakajima from the Argelander Institute for Astronomy (AIfA) at the University of Bonn, who is responsible for image quality on the 600-megapixel optical VIS instrument in her role as instrument scientist.

The task for the next few months and years will now be to evaluate the reams of data obtained, a job that will culminate in a considerable number of scientific publications. Euclid’s findings will also prompt additional follow-up observations by other telescopes in order to fill in the gaps in our knowledge of the individual objects.

The mission

Euclid is a space mission launched by the European Space Agency (ESA) with contributions from the National Aeronautics and Space Administration (NASA) and is the second M-class mission in the ESA’s Cosmic Vision program.

The partners

The VIS and NISP were designed and constructed by a team of researchers and engineers from 17 countries. Many of them are from Europe, but there are also representatives from the US, Canada and Japan. German involvement comes in the form of the Max Planck Institute for Astronomy (MPIA) in Heidelberg, the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Ludwig-Maximilians-Universität München (LMU), the University of Bonn, Ruhr University Bochum (RUB), and the German Space Agency, which is part of the German Aerospace Center (DLR) in Bonn.

Original press release by the German members of the Euclid Consortium, including additional images:
https://www.mpia.de/news/2023-euclid-ero-first-images

Spiral galaxy IC 342:
Spiral galaxy IC 342: - Euclid will map billions of galaxies in its lifetime and reveal the invisible influence exerted on them by dark matter and dark energy. So it is fitting that one of the very first galaxies that Euclid has observed—known formally as IC 342 or Caldwell 5—is nicknamed the “Hidden Galaxy.” Thanks to its infrared vision, Euclid has already sent back important information about the stars in this galaxy, which bears many similarities to our own Milky Way. © ESA/Euclid/Euclid Consortium/NASA, image edited by J.-C. Cuillandre and G. Anselmi; CC BY-SA 3.0 IGO
Perseus cluster:
Perseus cluster: - this snapshot from Euclid represents a major step forward in astronomy. The picture shows 1,000 galaxies within the Perseus cluster and over 100,000 more far off in the background. Up until now, it has not been possible to see many of these faint galaxies, some of which are so distant that the light from them has taken 10 billion years to reach us. Mapping the distribution and shape of these galaxies will tell cosmologists more about how dark matter formed the universe that we see today. © ESA/Euclid/Euclid Consortium/NASA, image edited by J.-C. Cuillandre and G. Anselmi; CC BY-SA 3.0 IGO

The German Space Agency within DLR is coordinating the German contributions to the ESA as well as providing €60 million in funding from the country’s national space program to the German research institutes involved.

Wird geladen