Beschleunigung, Drehung, Magnetfelder oder Ströme – das sind nur einige der Größen, über die Quantensensoren genauen Aufschluss geben können. Die Sensoren kommen in vielen Bereichen zur Anwendung, zum Beispiel in der Medizin, der Automobiltechnologie oder der Geodäsie. Forschende nutzen sie unter anderem für ihre Arbeiten zum Quantencomputing, für Präzisionsmessungen und sogenannte optische Uhren.
Dabei gilt: Die Sensoren müssen möglichst klein und möglichst präzise sein. Um das zu schaffen, bedienen sich Wissenschaftlerinnen und Wissenschaftler bereits einer bewährten Methode, indem sie die Sensoren auf einem Chip platzieren. Mithilfe kleiner Drähte leiten sie darauf die erforderlichen Signale und Spannungen. Wellenleiter und Glasfasern leiten wiederum die Lichtfelder auf den Chip. Am Ende sind hunderte von Kontakten und Fasern an den Chip angebunden.
Für die Erzeugung der Atome, die oft das Herzstück des Sensors darstellen, wird bisher jedoch noch eine andere Methode genutzt: Man erwärmt eine kleine Probe, bis die Atome verdampfen und eingefangen werden können. „Das bringt jedoch Probleme mit sich, da der dafür benötigte Ofen sehr viel Platz braucht und die entstehende Wärme für die Messung sehr störend ist. Schließlich arbeiten wir im Kryostaten mit sehr niedrigen Temperaturen“, erklärt Prof. Dr. Simon Stellmer vom Physikalischen Institut der Universität Bonn, Koordinator des neuen Projekts „QuantumGuide“.
Atomquelle auf Chip
Er und seine Kolleginnen und Kollegen aus Deutschland, Österreich, Polen und der Schweiz arbeiten daher an einer alternativen Vorgehensweise. Ihr Ziel ist es, auch die Quelle für die Atome auf dem Chip zu integrieren. Unter räumlichem Abstand sollen dazu einzelne Atome in eine Hohlkernfaser eingeführt und dann durch die Faser zum Sensor gebracht werden.
Die Vorarbeiten sind bereits abgeschlossen. In einem nächsten Schritt möchte das Team das System für die Vermarktung vorbereiten. „Damit unsere Technologie das Quantenoptik-Labor verlassen und zu einem kommerziellen Produkt werden kann, muss sie mit einer Vielzahl von Anwendungen kompatibel und gleichzeitig effizienter werden. Genau das ist das Ziel des QuantumGuide-Projekts“, betont Stellmer. Er ist Mitglied des Transdisziplinären Forschungsbereichs „Matter“ der Universität Bonn und des Exzellenzclusters „Matter and Light for Quantum Computing (ML4Q)“, einem Verbund der Universitäten Bonn, Köln und Aachen sowie des Forschungszentrums Jülich.
Ein weiteres Mitglied der beiden Verbünde freut sich ebenfalls über eine Förderung: Prof. Dr. David Luitz vom Physikalischen Institut der Universität Bonn arbeitet an einem anderen neu geförderten QuantERA-Projekt mit. Es hat den Namen DQUANT.
Das QuantERA-Programm
Das QuantERA-Programm ist ein europäisches Netzwerk von 39 Forschungsförderungsorganisationen aus 31 Ländern. Das Ziel des Programms ist es, exzellente europäische Kooperationsprojekte zu unterstützen, die das Potenzial haben, Quantentechnologien aus der Grundlagenforschung zur Marktreife zu bringen. Derzeit werden europaweit 77 Projekte mit einer Gesamtsumme von 89 Millionen gefördert.