Die Fossilprobe Ro-59.9 ist mit mikroskopisch kleinen Höhlungen übersät. Manche von ihnen sehen so aus, als hätten in ihnen einst winzige Himbeeren geschlummert, jede von ihnen gerade einmal zwei hundertstel Millimeter groß. Das versteinerte Blatt stammt von der Fossillagerstätte Rott in der Nähe von Bonn und ist mehr als 20 Millionen Jahre alt. Zu welcher Pflanzenart es gehört, lässt sich momentan nicht sagen.
Vielleicht ändert sich das bald. Denn Lage und Form der Vertiefungen sind wie eine Art Fingerabdruck: sie lassen sich für die Bestimmung fossiler Pflanzenreste nutzen. „Bislang wusste man nicht, wie diese Höhlungen entstanden sind“, erklärt Mahdieh Malekhosseini vom Institut für Geowissenschaften der Universität Bonn. „Man hat beispielsweise geglaubt, dass sie von Algen oder von Pollen anderer Pflanzen stammen, die im Zuge der Fossilisation irgendwie auf das Blatt geraten sind. Doch nach Analyse von Hunderten dieser Strukturen können wir das ausschließen. Stattdessen konnten wir zeigen, dass Kalziumoxalat-Kristalle für die Vertiefungen verantwortlich sind.“
Mikrolinsen für eine bessere Photosynthese?
Kalziumoxalat wird von sehr vielen lebenden Pflanzen gebildet; es gilt als eines der häufigsten Biomineralien. Welche Funktionen es erfüllt, ist noch nicht abschließend geklärt. Man vermutet aber, dass die Kristalle als Kalzium-Speicher dienen. Da sie zwar im Blatt gebildet werden, bei ihrem Wachstum aber oft die Blattoberfläche durchdringen, wehren sie zudem vermutlich Schädlinge ab. „Viele Insekten haben eine Abneigung gegen Kalziumoxalat - sie laufen nicht gerne darauf“, erklärt Prof. Dr. Jes Rust, der die Studie betreut hat. „Manche Pflanzen scheinen die Kristalle zudem als Mikrolinsen einzusetzen, um das Sonnenlicht effizienter für die Photosynthese nutzen zu können.“
Die Kristalle sind sehr säureempfindlich. Bei der Fossilisation lösen sie sich daher auf und lassen sich in den Millionen Jahre alten Funden dann nicht mehr nachweisen. Oft bleiben jedoch an den Stellen, wo sie gesessen haben (in der Biologie spricht man von „Drusen“), Abdrücke zurück. Mitunter sammeln sich in diesen Vertiefungen auch organisches Material oder andere Mineralien an, die dann wie winzige Kügelchen in dem fossilen Blatt sitzen.
„Wir haben die Mikrostruktur der Vertiefungen und ihre Verteilung auf fossilen Blättern untersucht, deren Artzugehörigkeit wir kannten“, erklärt Malekhosseini. „Zusätzlich haben wir uns Kalziumoxalat-Kristalle in den Blättern heutiger Pflanzen angesehen. Dabei haben wir bei nahe verwandten Arten deutliche Parallelen festgestellt. So ähneln die Kristallabdrücke in einem fossilen Ginkgo-Blatt in Verteilung und Struktur stark den Kalziumoxalat-Ablagerungen eines heutigen Ginkgos.“
Wichtige Einblicke in die Evolution
Von den Fossilien nacktsamiger Pflanzen wie Tannen oder Kiefern wusste man bereits, dass sie mitunter Abdrücke von Kalziumoxalat-Kristallen aufweisen. Von Bedecktsamern – das sind die meisten Blumen und Laubbäume – war das jedoch nicht bekannt. „Das ist ein völlig neues Forschungsfeld“, erklärt Jes Rust. „Wir wollen nun unter anderem untersuchen, wie sich die Fähigkeit, Kalziumoxalatkristalle zu bilden, im Laufe der Evolution entwickelt hat.“ Dabei möchten sich die Forschenden auf Zeiten konzentrieren, in denen sich die Umweltbedingungen rasch geändert haben – etwa die Temperatur oder die Intensität der UV-Strahlung. „Wenn sich nach solchen Einschnitten auch die Verteilung der Drusen verändert, dann können wir daraus Rückschlüsse auf die biologische Funktion der Kristalle ziehen“, sagt Rust.