Der Mensch besitzt rund 20.000 Gene. Sie bestimmen, wie unser Körper funktioniert, wie wir uns entwickeln und wie sich Zellen reproduzieren. „Bestimmte Gene sind beispielsweise für lebenswichtige Immunreaktionen verantwortlich, aber auch an lebensbedrohenden Entzündungsprozessen beteiligt“, sagt Prof. Dr. Jonathan Schmid-Burgk, Arbeitsgruppenleiter am Institut für klinische Chemie und klinische Pharmakologie des UKB und Mitglied im Exzellenzcluster Immunosensation2 der Universität Bonn. „Unser Forschungsinteresse besteht darin, diese Gene zu identifizieren, um Krankheiten besser behandeln zu können.“
Herkömmliche Methode: hoher Aufwand und eingeschränktes Spektrum
Das übliche Verfahren dafür ist das CRISPR-Screening, bei dem Zellen auf die Funktion aller Gene untersucht werden. „Mit CRISPR wird in jeder Zelle ein zufälliges Gen ausgeschaltet“, erklärt Schmid-Burgk. „Anschließend reichern wir die Zellen an, in denen ein bestimmter biologischer Prozess verändert abläuft.“ Dieses Vorgehen ist extrem aufwändig: Man benötigt für jeden Prozess eine eigene Methode, um die relevanten Zellen etwa mit Zell-Sortiermaschinen anzureichern. Ein weiterer Schwachpunkt: Das CRISPR-Screening funktioniert nicht in jedem Zelltyp – gerade die interessanten menschlichen Immunzellen überleben das mehrstufige Verfahren oft nicht.
Neue Methode: einfache Detektion leuchtender Zellkerne mit Mikroskop
Die Bonner Forschenden haben nun ein optisches CRISPR-Screening entwickelt, mit dem wichtige Gene deutlich einfacher und schneller identifiziert werden können: das Nuclear In-Situ Sequencing, kurz NIS-Seq. „Auch hier kommt CRISPR-Cas zum Einsatz“, erklärt Caroline Fandrey, Doktorandin in der Arbeitsgruppe von Prof. Schmid-Burgk und Erstautorin der Studie. „Allerdings können wir nahezu beliebige biologische Prozesse in Zellen beobachten, während sie noch leben, um die daran beteiligten Schlüsselgene zu identifizieren.“ Die Forscher bedienen sich dabei eines Tricks: Sie schleusen neben der CRISPR-RNA einen sogenannten Phagenpromoter in den Zellkern ein, der die CRISPR-Sequenzen vervielfältigt und in unterschiedlichen Farben zum Leuchten bringt – die bunten Konfettipunkte können mit üblichen Fluoreszenz-Mikroskopen in jeder Zelle abgelesen werden und verraten, welches Gen ausgeschaltet wurde.
Weniger als einhundert Zellen enttarnen ein relevantes Gen
„Mit NIS-Seq brauchen wir aktuell rund eine Woche, um ein relevantes Gen zu identifizieren“, sagt Marius Jentzsch, ebenfalls Doktorand bei Prof. Schmid-Burgk und Erstautor der Arbeit. „Für einen herkömmlichen CRISPR-Screen benötigt man oft Monate, um die Zellen sauber nach ihrer Funktion voneinander zu trennen.“ Ein weiterer Vorteil der neuen Methode: Sie funktioniert bei nahezu allen Zellen, auch in besonders kleinen oder inaktiven Zellen – vorausgesetzt, sie besitzen einen Zellkern. In der Studie haben die Forscher acht Zelltypen zweier Spezies erfolgreich analysiert. Schmid-Burgk: „Wir sind überzeugt davon, dass unsere Methode der neue Standard für die Identifikation von genetischen Schlüsselakteuren zellulärer Prozesse wird.“