Nur wenige Nanometer groß sind die neuesten Generationen von Computerchips, die durch die fortschreitende Miniaturisierung immer energiesparender und leistungsfähiger werden. Da die klassischerweise verwandten Ätzverfahren bei der Chipherstellung zunehmend an ihre Grenzen stoßen, ist die Entwicklung neuer, nanostrukturierter Halbleitermaterialien essenziell. Auch bei der Umwandlung von Strom in Licht und umgekehrt spielen solche Nano-Halbleiter eine zentrale Rolle.
Einem Team der Goethe-Universität Frankfurt unter der Leitung von Matthias Wagner gelang jetzt die Synthese molekularer Nanobälle aus 20 Siliziumatomen, so genannter Silafullerane. Bei der zweiten neuen Stoffklasse handelt es sich um Kristall-Bausteine aus zehn Silizium- und Germaniumatomen, die eine Diamant-ähnliche Struktur haben. Entscheidende Einblicke in die elektronischen Strukturen der neuen Verbindungen gewährten computergestützte theoretische Analysen aus der Bonner Forschungsgruppe von Stefan Grimme. Der Professor für Theoretische Chemie ist Mitglied des Transdisziplinären Forschungsbereichs „Bausteine der Materie und fundamentale Wechselwirkungen“ der Universität Bonn.
Die 20 Siliziumatome des Silafullerans bilden einen Körper, der aus regelmäßigen Fünfecken zusammengesetzt ist, einen Dodekaeder. Er umschließt ein Chlorid-Ion. An jeder Siliziumecke des Körpers ragt ein Wasserstoffatom nach außen. Doktorand Marcel Bamberg, der das Molekül synthetisiert hat, erklärt: „Unser Silafulleran ist der lange gesuchte Stammvater dieser neuen Stoffklasse. Denn die Wasserstoffatome kann man leicht durch funktionelle Gruppen ersetzen und dem Silafulleran dadurch verschiedene Eigenschaften verleihen.“ Der Bonner Quantenchemiker Markus Bursch ergänzt: „Diese gezielte Erzeugung potentiell nützlicher Eigenschaften unterstützen wir durch theoretische Vorhersagen der sich ergebenden Effekte.“
Der den Elementen Silizium und Germanium chemisch sehr ähnliche Kohlenstoff kommt in vergleichbaren Formen vor wie die beiden neuen Stoffklassen: Hohlkugeln aus Kohlenstoffatomen („Fullerene“) entsprechen den Silafulleranen, und aus Adamantan-Untereinheiten sind die aus Kohlenstoff bestehenden Diamanten zusammengesetzt. Fullerene erhöhen zum Beispiel den Wirkungsgrad organischer Solarzellen, könnten die Batterien von Elektroautos sicherer machen und verheißen Fortschritte in der Hochtemperatur-Supraleitung. Nanodiamanten finden ebenfalls vielfältige Anwendungen, die von der Pharmazie bis zur Katalyseforschung reichen. Vor diesem Hintergrund sind die Forscher in Frankfurt und Bonn gespannt, auf welchen Gebieten sich ihre Silafullerane und Silizium-Germanium-Adamantane durchsetzen werden.
Publikation: Marcel Bamberg, Markus Bursch, Andreas Hansen, Matthias Brandl, Gabriele Sentis, Lukas Kunze, Michael Bolte, Hans-Wolfram Lerner, Stefan Grimme, Matthias Wagner: [Cl@Si20H20]−: Parent Siladodecahedrane with Endohedral Chloride Ion. J. Am. Chem. Soc., https://doi.org/10.1021/jacs.1c05598
Pressemitteilung der Universität Frankfurt: https://aktuelles.uni-frankfurt.de/forschung/neue-stoffklassen-fuer-nanomaterialien-nano-baelle-und-diamantsplitter-aus-silizium-und-germanium/