Die Erde dreht sich um die Sonne, und zwar im gleichen Drehsinn, wie die Sonne um sich selbst rotiert – zu dieser Erkenntnis war bereits Galileo gelangt. Eine Forschergruppe um Astrophysiker Professor Dr. Pavel Kroupa von der Universität Bonn hat nun Planeten außerhalb unseres Sonnensystems untersucht, die dieser Gesetzmäßigkeit völlig widersprechen: Die Wissenschaftler nutzten Daten zu Himmelskörpern, die ihren Mutterstern auf schiefen oder elliptischen Bahnen umkreisen. Einige bewegen sich sogar entgegengesetzt zu dessen Eigenrotation.
Um diese Ungereimtheiten zu klären, haben die Bonner Forscher mit ihren englischen Kollegen ein neues Modell der Planetenentstehung entwickelt. Computersimulationen, die Dr. Ingo Thies durchgeführt hat, zeigen, dass ein neues Planetensystem aus einem Zusammenstoß zweier Sternenwolken entsteht: Wenn eine Sternenwolke in die Umlaufbahn eines anderen Sterns hineingelangt, beginnt ein stürmischer Tanz aus Staub und Gas. Solche Wechselwirkungen zwischen Geschwistersternen dürften eher die Regel als die Ausnahme sein, weil Sterne üblicherweise in engen Sternhaufen entstehen.
Der eine Stern zieht wie ein kosmischer Staubsauger massenweise Gas aus der Wolke des anderen Sterns in seine eigene Umlaufbahn. Das Gas strömt so in zufälliger Richtung auf die bereits vorhandene Umlaufbahn aus Gas und Staub ein und dreht diese aus ihrer Richtung. „Im Extremfall können Umlaufbahnen sogar ganz ihren Drehsinn wechseln und in die andere Richtung kreisen“, erklärt Prof. Dr. Pavel Kroupa.
Durch die fremden Gasströme werde der innere Bereich der Wolke zusammengedrängt, was die Verklumpung der Staubwolken zu Planeten beschleunigt. Außerdem gebe es Planeten, deren Umlaufbahnen so stark geneigt seien, dass sie das ganze System instabil machten: „Die leichten Planeten werden dadurch nach und nach aus dem System geschleudert, während die schwereren Planeten auf engere Bahnen gedrängt werden“, erklärt Dr. Thies.
Diese neue Theorie zur Planetenentstehung könne Fragen in der Astrophysik beantworten, die das klassische Model offen ließ, so die Forscher. Bisher gingen Astronomen davon aus, dass Planeten in einer sich zusammenziehenden rotierenden Wolke entstehen, in dessen Zentrum sich ein junger Stern aufhält. Der Staub und das Gas, aus dem die Wolken bestehen, verklumpen zu vielen kreisrunden Bällen – den Planeten. Diese kreisen dann um den Stern, wie auch unsere Erde die Sonne umkreist: Alle schön geordnet in derselben Ebene und im gleichen Drehsinn, wie der Stern um sich selbst rotiert.
Doch selbst die Ebene unseres Sonnensystems ist etwa sieben Grad gegenüber dem Sonnenäquator geneigt. Daher sei ein frühes Rendezvous mit der Gaswolke eines anderen Sterns dafür durchaus eine plausible, wenn nicht sogar die einfachste Erklärung für die schiefen Planetenbahnen, meint Dr. Ingo Thies: „Zu unserem Glück verlief dieses Treffen jedoch glimpflich, so dass die Erde heute in geordneten Bahnen ihre Kreise zieht.“
Ingo Thies, Pavel Kroupa, Simon P. Goodwin, Dimitris Stamatellos, Anthony P. Whitworth: A natural formation scenario for misaligned and short-period eccentric extrasolar planets, Monthly Notices of the Royal Astronomical Society (MNRAS)
Link zum Preprint: http://arxiv.org/abs/1107.2113
Kontakt:
Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie der Universität Bonn
Tel. 0228/73-6140 und 0177/9566127
E-Mail: pavel@astro.uni-bonn.de
Dr. Ingo Thies
Argelander-Institut für Astronomie der Universität Bonn
Tel. 0228/73-3659
E-Mail: ithies@astro.uni-bonn.de