31. Mai 2013

Zelle sticht Virus: Forscher enträtseln angeborenen Immunmechanismus Zelle sticht Virus: Forscher enträtseln angeborenen Immunmechanismus

Neuartiger Botenstoff spielt bei der Erkennung fremden Erbguts eine Schlüsselrolle

Wissenschaftler der Universität Bonn und der LMU München haben einen angeborenen Immunmechanismus enträtselt, der unter anderem bei Virenattacken zum Einsatz kommt. Demnach bildet die befallene Zelle einen exotischen Botenstoff, sobald sie verdächtiges Erbgut entdeckt, das von einem Erreger stammen könnte. Dadurch alarmiert sie die Immunabwehr. Die Studie ist online in der Zeitschrift Nature erschienen (DOI: 10.1038/nature12306).

Hornung Veit.jpg
Hornung Veit.jpg - Prof. Dr. Veit Hornung. © Foto: Johann Saba/UKB
Alle Bilder in Originalgröße herunterladen Der Abdruck im Zusammenhang mit der Nachricht ist kostenlos, dabei ist der angegebene Bildautor zu nennen.

Viren schleusen bei einem Angriff ihr Erbgut in die von ihnen attackierten Zellen ein. Sie bringen ihre Opfer so unter ihre Kontrolle. Doch diese nehmen das in der Regel nicht wehrlos hin: Ein angeborener Immunmechanismus ermöglicht es den angegriffenen Zellen, verdächtige Erbsubstanz zu erkennen. So können sie rechtzeitig die körpereigenen Abwehrtruppen alarmieren, bevor sich die Infektion ausbreitet.

Wie das genau funktioniert, war bislang unbekannt. Man kannte zwar die Alarmsirene – ein Protein namens STING (englisch: Stich), das in bestimmten Bereichen des Zellkörpers vorkommt. Vor kurzem wurde zudem ein Sensor identifiziert, der verdächtiges Erbgut in Form von Desoxyribonukleinsäure (DNA) in der Zelle aufspüren kann. Doch wie gelangt das Signal vom Sensor zur Sirene?

Die Nature-Studie gibt auf diese Frage eine Antwort. Demnach stellt der Sensor – ein Enzym namens cGAS – bei Kontakt mit dem Erbmolekül DNA einen neuartigen, „exotischen“ Botenstoff her. Wenn dieser Botenstoff an das STING-Protein andockt, wird dadurch der Alarm ausgelöst. Damit startet eine Art Großrazzia, in der Spezialeinheiten des Immunsystems ganz gezielt Jagd auf Viren und ähnliche Erreger machen.

DNA-spezifisches Alarmsignal

Interessant ist dieser Mechanismus auch deshalb, weil Immunologen STING bislang aus einem anderen Zusammenhang kannten. Das Protein schlägt nämlich auch dann Alarm, wenn es in Kontakt mit bestimmten bakteriellen Botenstoffen kommt. Es spielt also sowohl bei der Abwehr von fremder DNA als auch bei der Bekämpfung von Bakterien eine bedeutende Rolle.

Ursprünglich nahm man an, dass cGAS nach Kontakt mit DNA eine Substanz herstellt, die der aus Bakterien ähnelt. Die Bonner Forscher konnten nun jedoch zeigen, dass der von cGAS synthetisierte Botenstoff einen kleinen, aber ganz entscheidenden Unterschied aufweist. Eine bestimmte molekulare Verknüpfung sieht bei ihm anders aus als ursprünglich vermutet. Ein scheinbar kleines Detail, das jedoch große Konsequenzen hat: „Jetzt wissen wir, warum das menschliche STING ganz anders auf den zelleigenen cGAS-Botenstoff reagiert als auf die Bakterienprodukte“, erläutert Dr. Andrea Ablasser vom Institut für Klinische Chemie und Klinische Pharmakologie des Universitätsklinikum Bonn.  Es gibt also ein DNA-spezifisches Alarmsignal, das die Zelle dazu bringt, ihren Stachel gegen Viren zu benutzen.

Die Bonner Kooperationspartner an der Ludwigs-Maximilian-Universität (LMU) München konnten zudem aufklären, wie cGAS diesen Exoten synthetisiert. „Wir konnten zeigen, welche räumliche Struktur cGAS bei Kontakt mit DNA annimmt“, erläutert der LMU-Biochemiker Professor Dr. Karl-Peter Hopfner. „Diese Information hat uns geholfen, den Syntheseweg zu rekonstruieren.“

Langfristig könnten die Ergebnisse der Arbeit den Zugang zu neuen Therapien eröffnen oder auch neuartige Impfungen ermöglichen. „Es ist beispielsweise denkbar, spezifische Pharmaka zu entwickeln, mit denen wir diesen Signalweg manipulieren können“, erklärt der Leiter der Studie Professor Dr. Veit Hornung. „Wir könnten so das Immunsystem ganz gezielt in erhöhte Alarmbereitschaft versetzen oder aber – etwa im Falle von Autoimmunkrankheiten – seine Abwehrreaktion unterdrücken.“

Kontakt:
Prof. Dr. Veit Hornung
Institut für Klinische Chemie und Klinische Pharmakologie, Universität Bonn
Telefon: 0228/287-51200
E-Mail: veit.hornung@uni-bonn.de

Dr. Andrea Ablasser
Institut für Klinische Chemie und Klinische Pharmakologie, Universität Bonn
Telefon: 0228/287-51200
E-Mail: andrea.ablasser@uni-bonn.de

Wird geladen