18. September 2016

Überraschender Einblick in die Welt der Atomkerne Überraschender Einblick in die Welt der Atomkerne

Computersimulation unter Beteiligung der Universität Bonn liefert ein unerwartetes Ergebnis

Wie fügen sich Neutronen und Protonen zu Atomkernen zusammen? Eine neue Computersimulation liefert auf diese Frage ein überraschendes Ergebnis: Wurde in der Simulation ein einziger Parameter minimal verändert, hatte das fundamentale Auswirkungen auf den Aufbau der Kerne. Unter leicht unterschiedlichen Bedingungen könnte unser Universum daher ganz anders aussehen. An der Studie waren neben der Universität Bonn das Forschungszentrum Jülich, die Ruhr-Universität Bochum und zwei amerikanischen Hochschulen beteiligt. Die Ergebnisse erscheinen heute in der Fachzeitschrift „Physical Review Letters“.

Bei einem bestimmten „Mischungsverhältnis“
Bei einem bestimmten „Mischungsverhältnis“ - zwischen lokalen und nicht-lokalen Wechselwirkungen im Kern kommt es plötzlich zu einem Phasenübergang von einem Gas aus Alpha-Teilchen hin zu einer nuklearen Flüssigkeit. Bei welchem Mischungsverhältnis dieser Übergang stattfindet, hängt von der Größe des Kerns ab, also der Zahl der Protonen und Neutronen. © Grafik: Dean Lee
Alle Bilder in Originalgröße herunterladen Der Abdruck im Zusammenhang mit der Nachricht ist kostenlos, dabei ist der angegebene Bildautor zu nennen.

Atomkerne sind der Stoff, auf dem unsere Existenz basiert. Sie sind aus positiv geladenen Protonen und ungeladenen Neutronen aufgebaut. Doch was passiert, wenn sich diese zu Kernen verbinden? Diese Frage beschäftigt schon Generationen von Physikern.

Wie sich die Neutronen im Kern genau anordnen, ist nämlich je nach Atom unterschiedlich: In manchen Atomen sind die Kerne aus so genannten Clustern aufgebaut. Das sind Gruppen von je zwei Protonen und Neutronen, die man auch als Alpha-Teilchen bezeichnet. In anderen Atomen lassen sich diese Alpha-Teilchen dagegen nicht beobachten. „Wir wissen bislang nicht, warum das so ist“, erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn.

Um den Vorgängen bei der Bildung der Atomkerne genauer nachzuspüren, bemühen Physiker heute Computersimulationen. Diese erfordern jedoch extrem komplexe Berechnungen. Selbst mit den schnellsten Supercomputern lässt sich heute daher nur die Entstehung sehr kleiner Kerne simulieren. Ziel der aktuellen Studie war es ursprünglich, die Rechenverfahren effizienter zu machen, um mittelfristig auch die Bindungsverhältnisse in größeren Kernen simulieren zu können.

Unerwartete Beobachtung

Wenn zwei Alpha-Teilchen in einem Atomkern zusammen kommen, beeinflussen sich beide gegenseitig – sie treten miteinander in Wechselwirkung. Wenn sich dabei die relative Position der Protonen und Neutronen in beiden Alpha-Teilchen zueinander nicht verändert, nennt man diese Wechselwirkung „lokal“. Ansonsten spricht man von einer nicht-lokalen Wechselwirkung. „Wir haben in unseren Simulationen das 'Mischungsverhältnis' zwischen lokalen und nicht-lokalen Wechselwirkungen variiert“, erklärt Prof. Meißner. „Wir haben also immer mehr lokale Wechselwirkungen beigemischt.“

Dabei zeigte sich ein unerwarteter Effekt: Ab einem bestimmten Mischungsverhältnis änderte sich der Zustand des Kerns fundamental. Bildlich gesprochen, ging der Kern von einem gasförmigen in einen flüssigen Zustand über. Im gasförmigen Zustand ist der Kern aus Alpha-Teilchen aufgebaut, entsprechend einem Bose-Einstein Gas, im flüssigen dagegen nicht. „Bei welchem Mischungsverhältnis dieser Phasenübergang stattfindet, hängt von der Größe des Kerns ab“, sagt der Erstautor der Studie, Prof. Meißners Mitarbeiter Dr. Serdar Elhatisari.

Die Bindungsverhältnisse im Kern seien also in der Natur ganz nahe an einer Instabilität, die vorher nicht beobachtet wurde, ergänzt Prof. Meißner: „Wenn man den Parameter, der die relative Stärke der lokalen zur nicht-lokalen Wechselwirkung bestimmt, nur ein kleines bisschen variiert, dann sieht unser Universum ganz anders aus. Unsere Simulationen bieten ein völlig neues Werkzeug, um die Verbindung von Kernstruktur zu den Kernkräften genauer zu verstehen.“

Die Studie wurde durch Mittel der Deutschen Forschungsgemeinschaft (SFB/TR 110), das BMBF (05P15PCFN1), der Helmholtz Gemeinschaft (JUQUEEN Supercomputer Ressourcen), des U.S. Department of Energy und der National Science Foundation der USA ermöglicht.

Publikation: Serdar Elhatisari, Ning Li, Alexander Rokash, Jose Manuel Alarcon, Dechuan Du, Nico Klein, Bing-nan Lu, Ulf-G. Meißner, Evgeny Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee, Gautam Rupak: Nuclear binding near a quantum phase transition; Physical Review Letters; DOI: 10.1103/PhysRevLett.117.132501

Kontakt:

Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik
Universität Bonn
Tel. 0228/732365
E-Mail: meissner@hiskp.uni-bonn.de

Wird geladen