Euclid has two cameras: the VIS camera provides high-resolution images in visible light. In contrast, the NISP camera measures infrared light and produces images and spectra. With the data from VIS and NISP, the six German institutes of the international Euclid consortium hope to gain insight into the influence of dark matter and dark energy on the structure of the cosmos and to understand the first objects in the early universe.
The reactions of the members of the Euclid consortium are enthusiastic. “Although these first test images are not yet usable for scientific purposes, I am pleased that the telescope and the two instruments are now working superbly in space,” says Knud Jahnke from the Max Planck Institute for Astronomy (MPIA) in Heidelberg. He is one of the two instrument scientists of Euclid’s Near Infrared Spectrograph and Photometer (NISP).
“We are very pleased that the commissioning phase of Euclid is progressing well,” says Alessandra Roy, Euclid project manager at the German Space Agency at DLR. “The spacecraft will soon reach its final position at a distance of 1.5 million kilometres from Earth and begin scientific observations. Then Euclid will shed light on the dark side of the universe.”
Euclid will systematically study the influence of dark matter and dark energy on the evolution and large-scale structure of the cosmos for the first time from space. Together, these largely unknown and invisible components of the universe account for 95 per cent of the cosmos. While dark matter determines the gravitational effects between and within galaxies and initially caused the universe’s expansion to slow down, dark energy is responsible for the current accelerated expansion of the universe.
Further information:
MPI for Astronomy press release: https://www.mpia.de/news/2023-euclid-testimages
Euclid launch press release: https://www.uni-bonn.de/en/news/118-2023