- Helmholtz Institute for Radiation and Nuclear Physics
- TRA Matter
- Machine Learning
- Variational Inference
- Lattice Field Theory
- Quantum Computing
Nicoli, K. A., Nakajima, S., Strodthoff, N., Samek, W., Müller, K. R., & Kessel, P. (2020). Asymptotically unbiased estimation of physical observables with neural samplers. Physical Review E, 101(2), 023304.
Nicoli, K. A., Anders, C. J., Funcke, L., Hartung, T., Jansen, K., Kessel, P., ... & Stornati, P. (2021). Estimation of thermodynamic observables in lattice field theories with deep generative models. Physical review letters, 126(3), 032001.
Vaitl, L., Nicoli, K. A., Nakajima, S., & Kessel, P. (2022). Gradients should stay on path: better estimators of the reverse-and forward KL divergence for normalizing flows. Machine Learning: Science and Technology, 3(4), 045006.
Vaitl, L., Nicoli, K. A., Nakajima, S., & Kessel, P. (2022, June). Path-gradient estimators for continuous normalizing flows. In International Conference on Machine Learning (pp. 21945-21959). PMLR
Room 2.013
Nussallee 14-16
53111 Bonn